Matematica. La regina delle scienze
 

Un trapezio isoscele

Glivenko 20 Giu 2017 12:05
Sia ABCD un quadrilatero di area 8 m^2 inscritto in una circonferenza.
Dimostrare che se esiste un punto P tale che la somma delle distanze di P dai
vertici del quadrilatero è 8 m, allora il quadrilatero è un trapezio isoscele.
El Filibustero 20 Giu 2017 15:35
On Tue, 20 Jun 2017 03:05:06 -0700 (PDT), Glivenko wrote:

>Sia ABCD un quadrilatero di area 8 m^2 inscritto in una circonferenza.
>Dimostrare che se esiste un punto P tale che la somma delle distanze
>di P dai vertici del quadrilatero è 8 m, allora il quadrilatero è
>un trapezio isoscele.

Un trapezio isoscele *molto* particolare: e' il quadrato di area 8.

Il punto di minima distanza dai vertici di un quadrilatero convesso e'
l'intersezione delle diagonali, quindi la somma delle diagonali
(mettiamo lunghe x e y) di ABCD e' al massimo 8. In un quadrilatero
circoscrivibile, l'area e' al massimo il semiprodotto delle diagonali.
Se x+y=8 e xy/2>=8, non c'e' altra scelta: x=y=4. Inoltre le diagonali
devono essere perpendicolari, per massimizzare l'area. L'unico
quadrilatero circoscrivibile con diagonali uguali e perpendicolari e'
il quadrato. Ciao
El Filibustero 20 Giu 2017 15:36
On Tue, 20 Jun 2017 03:05:06 -0700 (PDT), Glivenko wrote:

>Sia ABCD un quadrilatero di area 8 m^2 inscritto in una circonferenza.
>Dimostrare che se esiste un punto P tale che la somma delle distanze
>di P dai vertici del quadrilatero è 8 m, allora il quadrilatero è
>un trapezio isoscele.

Un trapezio isoscele *molto* particolare: e' il quadrato di area 8.

Il punto di minima distanza dai vertici di un quadrilatero convesso e'
l'intersezione delle diagonali, quindi la somma delle diagonali
(mettiamo lunghe x e y) di ABCD e' al massimo 8. In un quadrilatero
circoscrivibile, l'area e' al massimo il semiprodotto delle diagonali.
Se x+y<=8 e xy/2>=8, non c'e' altra scelta: x=y=4. Inoltre le
diagonali devono essere perpendicolari, per massimizzare l'area.
L'unico quadrilatero circoscrivibile con diagonali uguali e
perpendicolari e' il quadrato. Ciao
El Filibustero 20 Giu 2017 17:05
On Tue, 20 Jun 2017 15:36:41 +0200, El Filibustero wrote:

>L'unico quadrilatero circoscrivibile con diagonali uguali e
>perpendicolari e' il quadrato. Ciao

Ooooooooooooooooooooooooooooooooooops, ci sono anche quei trapezi
isosceli di cui al topic, con entrambe le diagonali (perpendicolari)
di 4. Chissa' perche' vedevo necessaria la simmetria rispetto a una
diagonale, condizione che non lo e'. Ciao

Links
Giochi online
Dizionario sinonimi
Leggi e codici
Ricette
Testi
Webmatica
Hosting gratis
   
 

Matematica. La regina delle scienze | Tutti i gruppi | it.scienza.matematica | Notizie e discussioni matematica | Matematica Mobile | Servizio di consultazione news.